Tracker
A crash course
About us

- Aleksander Morgado
 aleksander@lanedo.com
- Carlos Garnacho
 carlos@lanedo.com
Tracker, in pieces

- Structured storage
- Data miners
Structured storage

- Information is a graph [1]
 - Vertices are objects
 - Edges establish relations
- RDF for the ones familiar with it

[1] A labeled directed multi-graph for the picky
Structured storage (II)

• Insertions

 • Fundamentally a set of triples of data: subject / predicate / object

 – Subject = object → Vertices

 – Predicate → Edge
Example 1.

```
INSERT {
    <fooBar> a nie:InformationElement .
    <fooBar> dc:creator "The king of the world" .
    <fooBar> nie:plainTextContent "Lorem ipsum..."
}
```
Example 2.

```
INSERT {
    <fooBar> a nie:InformationElement ;
    dc:creator "The king of the world" ;
    dc:date "2013-07-24T09:45:09Z" ;
    nie:plainTextContent "Lorem ipsum..."
}
```
Structured storage (III)

- Queries (`SELECT ... WHERE { ... }`)
 - The Select clause let you define the returned data
 - The Where clause let you define a minimal graph,
 - all returned items satisfy it
 - Named variables (starting with '?')
 - Act as placeholders on the Select clause
 - Act as the '*' wildcard on the Where clause
Example 3.

SELECT ?creator WHERE {
 <fooBar> dc:creator ?creator .
}

Example 4.

```
SELECT ?predicate ?object WHERE {
}
```
Example 5.

```
SELECT ?subject ?object WHERE {
}
```
Structured storage (IV)

• Query filters
 • `SELECT ... WHERE { ... }` as shown only matches graphs, doesn't evaluate content
 • Filters let you apply arbitrary restrictions on the content
 – Comparisons
 – Substring matching
 – ...

Example 6.

```
SELECT ?subject ?object WHERE {
    FILTER (fn:starts-with (?object, 'The king')) .
}
```
Example 7.

```
SELECT ?subject WHERE {
    ?subject fts:match 'ipsu*' .
}
```
Structure of data (O#*%logy)

- A predefined, comprehensive set of schemas
 - Separated by domains of data, visible as prefixes in object definitions
- Defined on the same terms than data itself
- Both objects and relations between them are subject to inheritance and more specific definitions
Example 8.

```
SELECT ?shortname ?prefix
WHERE {
  ?prefix a tracker:Namespace ;
  tracker:prefix ?shortname .
}
```
Schemas

- xsd: Basic data types
- rdf/rdfs: Resources and properties
- dc: Common set of superproperties
- nie: Topmost classes
- nao: Tags, ratings and other annotations
- nco: Contacts
- nfo: Files and local resources
- nmo: Messaging
- ncal / scal: Calendars and events
- nmm: Multimedia objects
- mfo: Feeds
- mtp: Media transfer
- tracker: Tracker additions
- slo: geolocation
Example 9.

```
SELECT
  ?predicate ?object
WHERE {
}
```
Example 10.

```
SELECT ?resource
WHERE {
}
```
Example 11.

```
SELECT
    ?resource ?subclass
WHERE {
}
```
Example 12.

```sql
SELECT
    ?property
WHERE {
}
```
Example 13.

```
SELECT
    ?property ?resource
WHERE {
}
```
Example 14.

```sql
SELECT
    ?property ?parent
WHERE {
}
```
Thanks!

- Website:
 http://projects.gnome.org/tracker

- Wiki:
 https://wiki.gnome.org/Tracker

- Mailing list:
 tracker-list (at) gnome.org