
High resolution display support in 
Gnome

Alexander Larsson <alexl@redhat.com>



Who am I?



Problem definition





WTF?

I can't read!



Enter: DPI – Dots Per Inch

 Pixels per inch on the output screen
 Historically around 100 DPI for monitors
 Chromebook Pixel has 239 DPI

 Setting in X (Xft.DPI)
 Normally set to 96 by Gnome
 Tweakable via 

org.gnome.desktop.interface.text-scaling-factor





It only changed the text size!

Why?



Why not scale everything with DPI?

For monitors with “traditional” densities:
 One pixel is “visible”
 Rendering needs to match pixel grid to not look fuzzy
 Even when the rendering is “vector” based

Also:
 Lots of content is pixel based

● Icons
● Pictures
● Cursors





Fuzzy, variable width lines

Scaled pixel sources

Rendered at 120%



Why not scale everything with DPI? (cont)

Also, it doesn't really matter in practice:

Height of buttons on screen:
 Laptop screen: 6mm
 23” external monitor: 8mm

Both work fine.

However, on the Pixel it clearly doesn't work



Icons are too small
And don't match text height



Fixed size widgets are hard to hit



Images used are small



Default window sizes are too small



Widget min/default sizes are wrong



Mouse pointer is too small
And it moves too slowly



Hard to resize windows



Not enough padding
Borders too thin



Summing it up

 Lots of places specify sizes in pixels
 Implicit sizes based on images don't scale
 Don't want to change all existing code
 Don't want to make code more complex



Multiple monitors

 External monitors may have lower DPI
 A window can be visible on multiple monitors

Want a window to have approximately the same physical size 
on all monitors.



Solution:

 Specify sizes in an abstract “pixel” size
 On “traditional” monitors these are the same as monitor 

pixels
 On “HiDPI” monitors these are scaled to multiple monitor 

pixels
 Use integer scaling factor to keep pixel grid alignment
 Scaling is applied automatically
 Vector-based drawing renders in higher resolution
 Allow specifying high resolution alternatives for pixel data

● Icons
● CSS images





How does this affect programmers - Cairo

 cairo_surface_set_device_scale()
 cairo_surface_get_device_scale()
 Automatically applies a scaling factor when rendering

● Can't unset with e.g. cairo_identity_matrix()
 Applies scale factor when using the surface as source
 You don't really have to care, Gtk+ hides this



How does this affect programmers - Gdk

 Window, Screen, Monitor:
● Sizes reported in abstract pixels
● Position reported in abstract pixels

 gdk_window_get_scale_factor()
● May change over time

 gdk_screen_get_monitor_scale_factor()
● May change over time

 Mouse position reported in abstract pixels
● Uses floating point, so has full resolution



How does this affect programmers – Gdk (cont)

 gdk_window_create_similar_surface()
● Creates scaled offscreen surfaces if the window is 

scaled
● Use this for all kinds of double buffering to avoid 

pixelized results
● Recreate double buffers when scale changes

 gdk_window_create_similar_image_surface()
● Allows creation of scaled image surfaces
● Lets us specify pixel data which will automatically 

scale correctly when drawn
● Allows you to specify the target GdkWindow ahead 

of time for more efficient rendering
 gdk_cairo_surface_create_from_pixbuf()



How does this affect programmers - Gtk

 Size allocation happens in abstract pixels
 GtkWidget::scale

● Use property notification to detect changes
 cairo_surface_t is the primary way to specify pixel data

● gtk_image_[new|set]_from_surface
● GtkCellRendererPixbuf::surface
● Automatic scaling wrt the target scale
● More efficient to render

 GtkIconTheme supports choosing scaled icons
● Icon theme spec extension for Scale
● Otherwise picks larger icons

 CSS extension to specify alternative images:
● -gtk-scaled(url('file.png'),url('file@2.png')) 

● Make sure they have the same size (sans scale)



Implementation – Wayland

 Protocol additions in Wayland 1.2
 Output/Surface positions in abstract pixels
 Compositor chooses the scale for each output

● Exposed to client by an Output property
 Clients can chose to supply a buffer of a larger scale
 Compositor scales client buffers as needed
 Allows mixed-scale monitor

● Including windows displaying on multiple monitors
 Gtk+ picks maximum scale of all monitors the window is on

● Changes when the window moves between monitors
 Uses cairo surface device-scale to implement scaling
 This is the future!



Implementation – X11

 X screens/monitor size/positions are reported scaled down
 XWindows are larger than the corresponding GdkWindows
 Event coordinates are scaled when converting from X
 Only one scale can be used for all monitors
 GDK_SCALE environment variable

● Useful for testing
 New Xsetting for scale

● Will be set automatically in Gnome
 New Xsetting for the “unscaled dpi”

● Normal dpi can be scaled for non-scale-aware apps
 Uses cairo surface device-scale to implement scaling
 Needs care when mixing with native X/GL operations



Implementation – OSX



Limitations



Thank brion



Future plans


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

