

GPG, SSH,
and Identity

for Beginners
GUADEC Strasbourg, July 2014

Federico Mena Quintero
federico@gnome.org

263F 590F 7E0F E1CB 3EA2
74B0 1676 37EB 6FB8 DCCE

mailto:federico@gnome.org
mailto:federico@gnome.org

DEMO

https://flic.kr/p/7Xbapi

● Crypto is Hard(tm)
● Be diligent...
● ... even if you aren't an expert
● It's a prophylactic

https://flic.kr/p/8u6uRu

● This is not a talk about OPSEC
● National Operations Security
● Spy stuff - “tradecraft”
● Useful to covert organizations in general

https://flic.kr/p/4TPxur
https://flic.kr/p/4TPwYv

Public-key
Cryptography

● Symmetric-key cryptography
● Easy to understand
● Key distribution is a problem

https://flic.kr/p/bXtoMA

● Private key
– The physical key
– The seal
– DO NOT SHAREDO NOT SHARE

● Public key
– The lock/box
– The imprint
– SHARE

https://flic.kr/p/7XEruh
https://flic.kr/p/6m7iJL
https://flic.kr/p/rq2Po
https://flic.kr/p/7piVnt

Confidentiality

Data integrity

Authentication

Non-repudiation

Your private key Their public key

What can we do?

Email

Send an email

Sign
with your private key
(“This comes from me”)
Stamp it with my seal

Encrypt
with their public key

(“This is for you only”)
Lock it in a box

Receive an email

Decrypt
with your private key
(“Only I can read this”)
Unlock the box

Authenticate
with their public key

(“I'm assured you
wrote exactly this”)

Check the imprint

Distributing packages

Distribute a package

Sign
with your private key
(“This comes from me”)
Stamp it with my seal

Distribute a package

Sign
with your private key
(“This comes from me”)
Stamp it with my seal

Your announcement email:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hi everyone!

I've just released foobar-3.4.5.tar.xz.
The SHA256 hash is af8abcbd6f9efceab68c746.

Sincerely,
 J. Random Hacker

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQGVAwUBU45IaJEDl9iNKTGaAQKCvAv8CFVTBvbN0u
...
-----END PGP SIGNATURE-----

Let them ensure
this comes from you

Let them validate
the tarball's integrity

Receive a package
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hi everyone!

I've just released foobar-3.4.5.tar.xz.
The SHA256 hash is af8abcbd6f9efceab68c746.

Sincerely,
 J. Random Hacker

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQGVAwUBU45IaJEDl9iNKTGaAQKCvAv8CFVTBvbN0u
...
-----END PGP SIGNATURE-----

Receive a package

Authenticate
with their public key

(“I'm assured you
packaged exactly this”)

Check the imprint

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hi everyone!

I've just released foobar-3.4.5.tar.xz.
The SHA256 hash is af8abcbd6f9efceab68c746.

Sincerely,
 J. Random Hacker

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQGVAwUBU45IaJEDl9iNKTGaAQKCvAv8CFVTBvbN0u
...
-----END PGP SIGNATURE-----

Receive a package

Authenticate
with their public key

(“I'm assured you
packaged exactly this”)

Check the imprint

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hi everyone!

I've just released foobar-3.4.5.tar.xz.
The SHA256 hash is af8abcbd6f9efceab68c746.

Sincerely,
 J. Random Hacker

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQGVAwUBU45IaJEDl9iNKTGaAQKCvAv8CFVTBvbN0u
...
-----END PGP SIGNATURE-----

Your email client checks
the signature

You check the tarball's
hash

Your private key Your public key

Generating key-pairs

Your private key Your public key

Generating key-pairs

https://flic.kr/p/7XEruh

Distributing
public keys

How do you
give these
to people?

Receiving
public keys

How do you
find/receive

these?

How do you
ensure the

keys are
authentic?

Trust

Trust
models

Centralized model
(Certificate Authorities)

You

Centralized model
(Certificate Authorities)

You

Trust

Certificate
Authority

Centralized model
(Certificate Authorities)

You

Trust

Certification

Certificate
Authority

Centralized model
(Certificate Authorities)

You

Centralized model
(Certificate Authorities)

You

Trust

Certification

Certificate
Authority

Centralized model
(Certificate Authorities)

You

Trust

Certification

Certificate
Authority

$$$$

Centralized model
(Certificate Authorities)

You

Trust

Certification

Certificate
Authority

$$$$

Centralized model
(Certificate Authorities)

You

Trust

Certificate
Authority

$$$$

`

You

Distributed model
(Web of Trust)

Do you trust the monkey?

SSH
(secure shell)

$ telnet somehost.example.com
Trying 192.168.1.87...

somehost login: _

$ telnet somehost.example.com
Trying 192.168.1.87...

somehost login: federico
Password: _

$ telnet somehost.example.com
Trying 192.168.1.87...

somehost login: federico
Password: _

KABOOM

SSH user (you)

● Private key
(yours only)
– Encrypted with a

passphrase

● Public key
– Copied to
~/.ssh/authorized_keys
in destination
machines

SSH server (git.gnome.org)

● Private key
(server's only)

● Public key
– Copied to ~/.ssh/known_hosts

in your machine, automatically,
when you first ssh in

pambazo:~$ ssh tlacoyo.local
The authenticity of host 'tlacoyo.local (192.168.1.87)' can't be
established.
ECDSA key fingerprint is
fc:26:07:61:c9:2c:1f:6c:90:64:59:d7:11:6d:6f:06.
Are you sure you want to continue connecting (yes/no)? _

Am I connecting to the
correct machine?

Ask your sysadmin about this number
Hint:

 tlacoyo:~$ ssh-keygen -l -f /etc/ssh/ssh_host_ecdsa_key
 256 fc:26:07:61:c9:2c:1f:6c:90:64:59:d7:11:6d:6f:06 root@linux-szu1 (ECDSA)

 WHY?

pambazo:~/src$ git clone ssh://git.gnome.org/git/seahorse
Cloning into 'seahorse'...
The authenticity of host 'git.gnome.org (209.132.180.184)' can't be
established.
RSA key fingerprint is
00:39:fd:1a:a4:2c:6b:28:b8:2e:95:31:c2:90:72:03.
Are you sure you want to continue connecting (yes/no)? _

Do we publish this anywhere?

GPG
(GNU Privacy

Guard)

PGP
(Pretty Good

Privacy)

GPG keys

● Private key
(yours only)
– Encrypted with a

passphrase

● Public key
– Give it to people so they:

● Can mail you encrypted stuff
● Can verify stuff came from

you

Caveats

● Mail subjects are NOT ENCRYPTED!
● From: you@example.com
To: partner@example.com
Subject: Let's overthrow the government

----- BEGIN PGP MESSAGE -----
ASPODFJQPW9F8TALIRFYW9RFYASJKRFY7S
QWE8R7HF9AW8E7F9AWE88R7JAW99RFA9W7
A0S89F7VH9AW8E7RFH938457FJ9WCFHYKA

● Subject: ...

mailto:you@example.com
mailto:partner@example.com
mailto:you@example.com
mailto:partner@example.com

Keysigning party

● Meet people in person

● Exchange public keys and/or fingerprints

● You can sign their keys later

● Look for the signing-party package!

● You are not qualified to check
government-issued IDs :)

● http://mikegerwitz.com/papers/git-horror-story

● http://thehackernews.com/2013/01/hundreds-of-ssh-priv
ate-keys-exposed.html

http://mikegerwitz.com/papers/git-horror-story
http://thehackernews.com/2013/01/hundreds-of-ssh-private-keys-exposed.html
http://thehackernews.com/2013/01/hundreds-of-ssh-private-keys-exposed.html
http://mikegerwitz.com/papers/git-horror-story
http://thehackernews.com/2013/01/hundreds-of-ssh-private-keys-exposed.html
http://thehackernews.com/2013/01/hundreds-of-ssh-private-keys-exposed.html

Are we out of time already?

● Come to the GPG/Crypto BoF!

● https://wiki.gnome.org/GUADEC/2014/
BOFs/Crypto

● Please write your name there!

● Federico Mena Quintero <federico@gnome.org>

GPG fingerprint:
263F 590F 7E0F E1CB 3EA2
74B0 1676 37EB 6FB8 DCCE

https://wiki.gnome.org/GUADEC/2014/BOFs/Crypto
https://wiki.gnome.org/GUADEC/2014/BOFs/Crypto
mailto:federico@gnome.org
https://wiki.gnome.org/GUADEC/2014/BOFs/Crypto
https://wiki.gnome.org/GUADEC/2014/BOFs/Crypto
mailto:federico@gnome.org

GPG, SSH,
and Identity

for Beginners
GUADEC Strasbourg, July 2014

Federico Mena Quintero
federico@gnome.org

263F 590F 7E0F E1CB 3EA2
74B0 1676 37EB 6FB8 DCCE

I gave this talk at GUADEC, the annual GNOME
conference. It was intended for people who are just
beginning to learn about public-key cryptography and
things like SSH.

Those hexadecimal digits at the bottom are my GPG
public key's fingerprint, in case you need to send me
confidential information, or more commonly, if you
need to ensure that something I signed indeed came
from me.

DEMO

Locks (MyEyeSees) - https://flic.kr/p/7Xbapi

First I gave a real-world demo with some physical
props: wooden boxes with little padlocks, wax that
you melt with a candle and stamps or seals for the
wax.

I was the king; volunteers in the audience were my
generals. I had their boxes and locks; they had the
respective keys. I had my stamp; they had copies of
the imprint. Thus I could send messages to them, so
that only them could open the boxes, and they could
ensure that the messages really came from me.

● Crypto is Hard(tm)
● Be diligent...
● ... even if you aren't an expert
● It's a prophylactic

Window cleaner photo (chicagogeek) -
https://flic.kr/p/8u6uRu

Cryptography is really hard to do properly. It's like
juggling eggs while someone is throwing rocks at
you.

Now that everything is on the internet, with malware
everywhere, and malicious nation-states watching
over everyone, all programmers need to know at
least the fundamentals of security and cryptography
if they are to write competent software.

At some point in the 80s it became accepted to talk
about safe sex. We need to make it accepted to talk
about privacy and security.

● This is not a talk about OPSEC
● National Operations Security
● Spy stuff - “tradecraft”
● Useful to covert organizations in general

White spy (Gord Fynes) - https://flic.kr/p/4TPxur
Black spy (Gord Fynes) - https://flic.kr/p/4TPwYv

This is not a talk about the kind of procedures you
need to follow if you are a covert organization, a
criminal, or a government spy. They all need secrecy
and secret communications.

However, they need to stay hidden. You probably
don't; you just need to stay safe, and you need your
privacy preserved.

Learning about OPSEC is both revolting and
morbidly interesting.

Public-key
Cryptography

First we will talk about public-key cryptography,
which is what we did with the boxes, locks, seals,
and imprints.

● Symmetric-key cryptography
● Easy to understand
● Key distribution is a problem

Decoder ring (Genevieve) - https://flic.kr/p/bXtoMA

Everyone learns symmetric-key cryptography when
they are children. Substitute letters in the alphabet
for the next letter, or for a permutation of the whole
alphabet.

This is easy to understand.

Distributing the secret keys (the permutation of the
alphabet) is problematic, since you need to be in
secure contact with your peer already – so why not
give them your message right there in the first place.

● Private key
– The physical key
– The seal
– DO NOT SHAREDO NOT SHARE

● Public key
– The lock/box
– The imprint
– SHARE

Numbers (Duncan C.) - https://flic.kr/p/7XEruh
Key (Brenda Clarke) - https://flic.kr/p/6m7iJL
Box (Brenda Clarke) - https://flic.kr/p/6hkKQB
Wax and stamps (Esther Simpson) -
https://flic.kr/p/rq2Po
Imprint (Eunice) - https://flic.kr/p/7piVnt

Public-key crypto has two parts. The private key is
yours only, and you need to keep it secret. In our
demo, the private key is the actual physical key to
open the locks, and the seals for wax.

The public key is for you to give away to your peers.
They don't need to be particularly careful around it. In
our demo, the public key is the boxes with locks, and
the wax imprints.

Confidentiality

Public-key crypto gives you four things:

1. Confidentiality is keeping the contents of the
communications secret. Only the recipient can read
the decrypted message.

Data integrity

2. Data integrity means the recipient can verify that
the data you sent them has not been tampered while
in transit.

Authentication

3. Authentication means the recipient can verify that
the message really comes from you and not an
impostor.

Non-repudiation

4. Non-repudiation means that you cannot deny that
you wrote a particular message.

Sometimes you want this property, and sometimes
you don't. It depends on whether you sign your
messages or not.

Your private key Their public key

What can we do?

So, what can we do with public key crypto?

Assume you have generated your key pair (the
public and private keys); assume you have
distributed your public key to your peers.

Email

We can do email!

Send an email

Sign
with your private key
(“This comes from me”)
Stamp it with my seal

Encrypt
with their public key

(“This is for you only”)
Lock it in a box

If you have someone's public key, you can write
encrypted email so that only they will be able to read
it. This is equivalent to putting your message in a
box with a lock, where only the recipient has the key
to the lock.

You can also sign your email with your own private
key. This is like stamping a wax seal on the
message to prove that it indeed comes from you
(and since this is digital, to guarantee that the
message is not modified by a malicious third-party.)

Receive an email

Decrypt
with your private key
(“Only I can read this”)
Unlock the box

Authenticate
with their public key

(“I'm assured you
wrote exactly this”)

Check the imprint

When you receive an encrypted email (that was
encrypted with your public key), you decrypt it with
your private key.

Presumably you also have the public key of your
peer. If they signed their message with their private
key, you can then use their public key to check that
the message is authentic – that they wrote it, not an
impostor, and that what you received is exactly what
they wrote, not a tampered version.

Distributing packages

You can use public-key crypto to validate software
packages that you distribute.

Distribute a package

Sign
with your private key
(“This comes from me”)
Stamp it with my seal

You make a tarball (or RPM, or DEB, etc.) and you
sign it with your private key.

Distribute a package

Sign
with your private key
(“This comes from me”)
Stamp it with my seal

Your announcement email:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hi everyone!

I've just released foobar-3.4.5.tar.xz.
The SHA256 hash is af8abcbd6f9efceab68c746.

Sincerely,
 J. Random Hacker

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQGVAwUBU45IaJEDl9iNKTGaAQKCvAv8CFVTBvbN0u
...
-----END PGP SIGNATURE-----

Let them ensure
this comes from you

Let them validate
the tarball's integrity

When you distribute your package, you can publish a
signed announcement that includes a cryptographic
hash of your package, so people can validate the
package's contents and its origin.

Receive a package
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hi everyone!

I've just released foobar-3.4.5.tar.xz.
The SHA256 hash is af8abcbd6f9efceab68c746.

Sincerely,
 J. Random Hacker

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQGVAwUBU45IaJEDl9iNKTGaAQKCvAv8CFVTBvbN0u
...
-----END PGP SIGNATURE-----

And when you receive a package and/or its
announcement...

Receive a package

Authenticate
with their public key

(“I'm assured you
packaged exactly this”)

Check the imprint

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hi everyone!

I've just released foobar-3.4.5.tar.xz.
The SHA256 hash is af8abcbd6f9efceab68c746.

Sincerely,
 J. Random Hacker

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQGVAwUBU45IaJEDl9iNKTGaAQKCvAv8CFVTBvbN0u
...
-----END PGP SIGNATURE-----

... you validate it against the public key you have
from the package's author.

Receive a package

Authenticate
with their public key

(“I'm assured you
packaged exactly this”)

Check the imprint

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Hi everyone!

I've just released foobar-3.4.5.tar.xz.
The SHA256 hash is af8abcbd6f9efceab68c746.

Sincerely,
 J. Random Hacker

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQGVAwUBU45IaJEDl9iNKTGaAQKCvAv8CFVTBvbN0u
...
-----END PGP SIGNATURE-----

Your email client checks
the signature

You check the tarball's
hash

Some people send out signed emails with package
announcements, that include a cryptographic hash of
the package's binary.

Other people publish the GPG signatures of the
package binaries along with the packages
themselves.

These are equivalent.

Your private key Your public key

Generating key-pairs

Generating keys is not hard. You tell GPG to do it, or
you use a graphical front-end like Seahorse.

Your private key Your public key

Generating key-pairs

Numbers (Duncan C) - https://flic.kr/p/7XEruh

A keypair is essentially a pair of big random
numbers. You keep the private one really secret,
and you can publish the public one.

Distributing
public keys

How do you
give these
to people?

But how do you get your public key out to people that
you'll communicate with?

Receiving
public keys

How do you
find/receive

these?

How do you
ensure the

keys are
authentic?

And how do you obtain other people's public keys so
that you can validate messages that come from
them?

How do you ensure that keys are authentic? If you
look for Ed Snowden's keys online, you'll find fake
ones.

Trust

Let's talk about trust.

Trust
models

Or rather, trust models.

This is not “do I trust this person with my life's
secrets”, but rather, “do I trust this person to be who
they say they are?”.

Centralized model
(Certificate Authorities)

You

The web works with a centralized trust model.
Certificate Authorities (CAs) are entities which
validate people's (or companies') identities.

Centralized model
(Certificate Authorities)

You

Trust

Certificate
Authority

Your web browser is preconfigured to trust certificate
authorities...

Centralized model
(Certificate Authorities)

You

Trust

Certification

Certificate
Authority

... which in turn validate other entities.

This means, “I trust the certificate authority to have
done its homework in ensuring that those people are
who they say they are”.

An impostor won't be validated by the certificate
authority; if you try to connect to an impostor
website, your web browser will warn you.

Centralized model
(Certificate Authorities)

You

There are multiple CAs, each with their trustees.

Centralized model
(Certificate Authorities)

You

Trust

Certification

Certificate
Authority

The problem is...

Centralized model
(Certificate Authorities)

You

Trust

Certification

Certificate
Authority

$$$$

... that money is involved. People pay certificate
authorities. You don't know if the CA actually does its
homework to validate those people.

Centralized model
(Certificate Authorities)

You

Trust

Certification

Certificate
Authority

$$$$

So, there are cases where “good” CAs inadvertently
validate a rogue entity...

Centralized model
(Certificate Authorities)

You

Trust

Certificate
Authority

$$$$

`

... or where malicious CAs validate rogue entities.

Malicious nation-states do this all the time to spy on
people's web-browsing habits.

You

Sad you, as a result.

Distributed model
(Web of Trust)

GPG uses a distributed trust model, the “web of
trust”.

Here, individuals say whom they trust to be genuine.
Or technically, whose keys they have made sure to
actually belong to the peers they think they'll be
communicating with.

Do you trust the monkey?

Again, “do you trust the monkey” doesn't mean that
you'll give it your house keys or your life's secrets. It
means that you have ensured that the monkey is the
monkey you think it is, and none other.

If you haven't received the monkey's public keys
directly from him, you need to trust your friends. The
more friends you have validated, who in turn have
validated the monkey, the more sure you can be that
the monkey is genuine and not a fake monkey.

SSH
(secure shell)

SSH, our beloved software to connect to remote
computers, also uses public-key crypto.

$ telnet somehost.example.com
Trying 192.168.1.87...

somehost login: _

SSH was written to replace Telnet. Telnet also lets
you connect to other computers, but it is
unencrypted.

Back in the university, we would run TCP sniffers on
the network and learn our classmates' passwords,
and what they were typing. Not good. SSH prevents
that.

$ telnet somehost.example.com
Trying 192.168.1.87...

somehost login: federico
Password: _

Passwords in cleartext = BAD

$ telnet somehost.example.com
Trying 192.168.1.87...

somehost login: federico
Password: _

KABOOM

REALLY BAD

SSH user (you)

● Private key
(yours only)
– Encrypted with a

passphrase

● Public key
– Copied to
~/.ssh/authorized_keys
in destination
machines

When you create an SSH keypair, you keep your
private key in your own home directory (and you
must keep it secret). SSH takes the precaution of
encrypting your key with a passphrase, so that if your
key gets stolen, the attacker will at least have a hard
time trying to decrypt the key.

You are supposed to copy your public key by hand to
destination machines. Sometimes a sysadmin can
do that for you.

SSH server (git.gnome.org)

● Private key
(server's only)

● Public key
– Copied to ~/.ssh/known_hosts

in your machine, automatically,
when you first ssh in

Each machine to which you connect (“a server”) has
its own keypair.

The private key of course stays secret. It gets
generated when the sysadmin installs SSH.

SSH takes care of copying the server's public key to
your home directory when you first connect to the
server. This is so that in the future you'll be warned if
the server's identity changes or if there is a man-in-
the-middle attack.

pambazo:~$ ssh tlacoyo.local
The authenticity of host 'tlacoyo.local (192.168.1.87)' can't be
established.
ECDSA key fingerprint is
fc:26:07:61:c9:2c:1f:6c:90:64:59:d7:11:6d:6f:06.
Are you sure you want to continue connecting (yes/no)? _

Am I connecting to the
correct machine?

Ask your sysadmin about this number
Hint:

 tlacoyo:~$ ssh-keygen -l -f /etc/ssh/ssh_host_ecdsa_key
 256 fc:26:07:61:c9:2c:1f:6c:90:64:59:d7:11:6d:6f:06 root@linux-szu1 (ECDSA)

If SSH doesn't know a server (like the first time you
connect to it), it will give you the server's key's
fingerprint. You are supposed to validate that
fingerprint!

Ask the server's sysadmin for confirmation.

Also, GNOME will prompt you for your SSH
passphrase.

 WHY?

Again, this is so that SSH can decrypt your private
key and use the result to encrypt the rest of your
session.

(That's a simplification of how things actually work,
but it's good enough.)

pambazo:~/src$ git clone ssh://git.gnome.org/git/seahorse
Cloning into 'seahorse'...
The authenticity of host 'git.gnome.org (209.132.180.184)' can't be
established.
RSA key fingerprint is
00:39:fd:1a:a4:2c:6b:28:b8:2e:95:31:c2:90:72:03.
Are you sure you want to continue connecting (yes/no)? _

Do we publish this anywhere?

I haven't seen any GNOME web pages where we
advertise the fingerprints of our servers.

One of the sysadmins told me that SSH can
automatically validate this through secure DNS. I
don't understand how that works, so I can't explain it
here.

GPG
(GNU Privacy

Guard)

GPG stands for GNU Privacy Guard...

PGP
(Pretty Good

Privacy)

... which is a play on the name of the software from
which it was originally derived.

GPG keys

● Private key
(yours only)
– Encrypted with a

passphrase

● Public key
– Give it to people so they:

● Can mail you encrypted stuff
● Can verify stuff came from

you

Reminder of how GPG keypairs work.

Again, your private key must stay secret. Like SSH,
GPG keeps your private key encrypted with a
passphrase, so that if someone steals your laptop
with your keys, they'll have a hard time
impersonating you or reading encrypted mail sent to
you.

Caveats

● Mail subjects are NOT ENCRYPTED!
● From: you@example.com
To: partner@example.com
Subject: Let's overthrow the government

----- BEGIN PGP MESSAGE -----
ASPODFJQPW9F8TALIRFYW9RFYASJKRFY7S
QWE8R7HF9AW8E7F9AWE88R7JAW99RFA9W7
A0S89F7VH9AW8E7RFH938457FJ9WCFHYKA

● Subject: ...

GPG email sucks in various ways.

One thing to keep in mind is that email subjects are
not encrypted; only the mail's body is. So, don't put
stuff in the subject that is meant to be secret. Use a
subject like “...” that doesn't give information to an
eavesdropper.

Keysigning party

● Meet people in person

● Exchange public keys and/or fingerprints

● You can sign their keys later

● Look for the signing-party package!

● You are not qualified to check
government-issued IDs :)

You can have a keysigning party to obtain a bunch of
people's public keys.

You can exchange the public keys themselves, or
just the fingerprints if you can obtain the keys later
through public keyservers.

There is a meme that you need to check
government-issued IDs for the people in keysigning
parties. This is bullshit. IDs are easy to forge, and
you don't know what a valid passport from the other
side of the world looks like, anyway.

In general, only accept keys from people you have
known personally for some time.

● http://mikegerwitz.com/papers/git-horror-story

● http://thehackernews.com/2013/01/hundreds-of-ssh-priv
ate-keys-exposed.html

Some horror stories for your amusement and
education.

Are we out of time already?

● Come to the GPG/Crypto BoF!

● https://wiki.gnome.org/GUADEC/2014/
BOFs/Crypto

● Please write your name there!

● Federico Mena Quintero <federico@gnome.org>

GPG fingerprint:
263F 590F 7E0F E1CB 3EA2
74B0 1676 37EB 6FB8 DCCE

At GUADEC we also held a Birds-of-a-Feather
session to get people started with GPG.

I gave out USB sticks, courtesy of SUSE, so that
people could have their very own encrypted USB
sticks to carry around sensitive data.

Then we created GPG keypairs for people, and
showed how to keep a master private key in the
encrypted USB, while your laptop only carries
secondary keys for signing/encryption.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

