
 Daiki Ueno, Anish Patil
Presented by

Next Generation Input Methods

Today's Topics
Japanese input basics �

The algorithm behind it

Next generation IM features

Architecture

Japanese input basics

Japanese Typewriter SH-280, CC-BY 3.0, by miya

Japanese input in one slide
ASCII sequence

kyouhaiitenkidesune

Japanese alphabets (Kana)

きょうはいいてんきですね

Japanese sentences (Kana + Kanji)

今日はいい天気ですね

きょうは良い天気ですね
...

Character
conversion

1:1

Sentence
conversion

1:N

There's no single solution, though
extremely rare combinations are not acceptable

How does it work?
1.Split input string into possible substrings

2.Assign Chinese characters to each substring

3.Find the most likely output

1. Split into substrings

き | ょうはいいてんきですね

きょ | うはいいてんきですね

…

きょう | は | いいてんきですね

きょう | はい | いてんきですね

…

きょう | は | いい | てんきですね

N=
n(n−1)

2

2. Assign Chinese characters

木 | ょうはいいてんきですね

巨 | うはいいてんきですね

…

今日 | は | いいてんきですね

今日 | 杯 | いてんきですね

…

今日 | は | 良い | てんきですね

N '=∑k=1

N
Ck

3. Find the most likely output

は / はきょう / 今日 ね / ね

きょ / 巨 う / 雨

BOS EOS

Transition cost

Now it turned into the shortest path problem.
But, how can we assign costs?

Language model
Assigns probability of sentence or words

1-gram: 1 word

2-gram: 2 consecutive words

3-gram: 3 consecutive words

...

Generated from a large set of examples

Based on features of each word
Notation, part of speech, length, ...

Implementation: libkkc
Language model

3-gram language model generated from:
Wikipedia (Japanese): 100,000 sentences

Yahoo! Chiebukuro (Q&A site): 20,000 sentences

Only using notation of each word

> 90% accuracy

To recover sentences from newspaper articles

Next generation
IM features

Problems
The language is changing

User's language skills are spoiled by computers

Language change
Natural language reflects current events

あべ (pronunciation: be) is a popular ə
Japanese family name, written as:

阿部 , 安倍 , 安部 , or 阿倍

When Mr. 安倍 was appointed as the Japanese
prime minister

あべしゅしょう should be安倍首相 , not 阿部首相
あべ せいけん should be 安倍政権 , not 阿部政権

Language change (cont'd)
Misuse sometimes becomes formal

怒り心頭に達する =たっする
怒り心頭に発する ＝はっする

Lots of new words / phrases emerge from slangs

Possible solutions
Do conversion online

Privacy issues

Release language model frequently

It could be large and require bandwidth

Interpolate language model with updates

May affect accuracy

Language skills are spoiled
Cumbersome to type the whole sentence

Can't remember the formal usage of a word

Can't remember the pronunciation of a character

We have thousands of characters

Possible solutions
Predictive input

Handwriting input

Predictive input
Suggest next possible word or phrase, from the
previously input words and history

Implementations

POBox, MS-IME, Google Japanese input, ibus-
typing-booster

Issues

Privacy: history carries sensitive information

Handwriting input
Find a character by handwriting shape, drawn
using a pointing device

Implementations

Mac OS X, ibus-handwrite

Issues

Accuracy

Writing speed

Common issues
New UI elements are needed

No user distractions

Don't interfere with other applications
e.g. Web browser suggestions

The current IBus implementations are PoC

Implemented as a separate IBus engine

Aren't backed by real engines

Architecture

Yet another IM architecture?
Are you proposing an IBus alternative?

No, no
This is a renovation project

What's wrong with the IBus architecture?

Traditional IM architecture

Pinyin engine

Hangul engine

Cangjie engine

Kana Kanji engine

Language
data

GTK immodule

Panel UI

XIM server

Complex
engine

Simple
engine

Custom protocol

SCIM, etc.

IBus architecture

gnome-shell

ibus-daemon

Pinyin engine

Hangul engine

Cangjie engine

Kana Kanji engine

GTK immodule

D-Bus protocolPanel

Client

IBus architecture (cont'd)
ibus-daemon

Re-implementation of dbus-daemon

Manage engine registration and input-contexts

Engine

Do actual language-specific input conversion

Panel

Provide UI stuff

IBus architecture (cont'd)
Pros

Crash resistant

Stable panel API, based on D-Bus

Cons

Slow response for input events

Implementation issues

Implementation issues
Unresponsiveness

The API is not fully asynchronous

Newly installed engines are not recognized
immediately

Don't recover crashed engine

Small number of test cases

~30% code coverage

Goals
Unified UI for predictive/handwriting input

Privacy

Performance

Our approach
Make engines more like an ordinary GNOME
application / service

Shall be registered through a .desktop file

Take advantage of sandboxing?

Eliminate ibus-daemon

Use session bus for: UI and engine activation

Use peer-to-peer connection for input events

Proposed architecture

IM server library

IM client
library

GTK immodule Kana Kanji engine

IM panel
library

gnome-shell

Complex engine process

IM backend
library

Kana Kanji engine

Simple engine process

Hangul engine

Cangjie engine
IM backend

library

CreateEngine,
ShowCandidateList,
RegisterMenu, ...

Session
bus

Proposed architecture

IM server library

IM client
library

GTK immodule Kana Kanji engine

IM panel
library

gnome-shell

Complex engine process

IM backend
library

Kana Kanji engine

Simple engine process

Hangul engine

Cangjie engine
IM backend

library

Directly talk
without daemon

KeyPress,
FocusIn, ...

Libraries?
Provide compatibility with IBus API, through GI

Make the panel API extensible

Manage connections between client and engines

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

